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Abstract: Power transformers are the most significant as well as the major asset 
of any power system network. The condition monitoring and assessment is the 
main concern in transformer management activities. As a first information source, 
dissolved gases-in-oil analysis (DGA) is universally accepted. The assessment of 
dissolved gases is characteristically observed analogous to grey system analysis. 
Grey system theory is supportive to the cases, when less information about the 
system is available. The cluster of grey incidences and whitenization weight func-
tions classifies the factors of same type, in order to simplify a complex system. 
Three caution levels of key gases specified in IEEE standards are utilized in this 
study, to whiten the weight functions. The whitenization weight function with lower 
measure is selected for caution level-1. However, whitenization weight functions 
with middle measure are preferred for level-2 and level-3. Several key gas samples 
of the equal rating transformers are collected from gas analyzer section and utilized 
in condition assessment computations. The test samples are verified with variable 
and equal weight clustering criteria. The criticality judgment of transformer with 
variable weight clustering successfully identifies the crucial elements amongst 
samples.
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1. Introduction
Power transformers play a key role in production and services, and in supplying the electricity to 
industrial and commercial sectors as well as to the domestic consumers. Maintaining the strength 
and reliability of the transformer has been a concern to avoid the power failure. There are several 
techniques for the maintenance, lifespan assessment, and condition evaluation of power system 
assets. Dealing with the problem of indicating and assessing the health of a transformer, several 
key measurements are available. The standards providing the guidance for use, analysis, and 
applications are included in ANSI/IEEE C57.104™ (2009) and IEC 60599 (1992). These standards 
are commonly known as the gas guides, which include the safety ranges of dissolved gases-in-oil. 
The dominating gases consist of hydrogen (H2), methane (CH4), acetylene (C2H2), ethylene (C2H4), 
ethane (C2H6), carbon monoxide (CO), and carbon dioxide (CO2). These seven gases are referred as 
key gases in the literature. The IEC and IEEE specified that three caution levels of key gases are 
useful in condition judgments (Scatiggio & Pompili, 2013). In condition-based ranking, transformer’s 
DGA data are evaluated against the established industry standards (Field, Cramer, & Antosz, 2002). 
Since the transformer condition was judged through health index or with criticality index, several 
groups assign scores as well (Jahromi, Piercy, Cress, Service, & Fan, 2009). These indices are vital in 
evaluating the state ranking of transformers (Abu-Siada, Arshad, & Islam, 2010). Researchers also 
attempt the different condition factors for every subsystem of transformer in preparing the 
concluding rank (Field et al., 2002; Hydroelectric Research and Technical Services Group, 2003; 
Toronto Hydro-Electric System Limited, 2010). However, condition-monitoring devices of power 
transformer are disseminated in nature and hardly interpret the inclusive and precise results for 
judgments about transformer health. As an immediate indicator, dissolved gas analysis is a simple 
and secured technique of power transformer testing. Significant weights are recommended in gas 
guide to main tank oil DGA. Furthermore, to draw a quantitative conclusion about the transformer 
reliability on numerical DGA data, appropriate assessment methods are desired.

Parametric data of transformer incorporated with soft-computing techniques are another kind of 
decision-making, applied in condition assessment of transformer. The several soft-computing 
methods are proposed and implemented based on DGA data intended for fault detection, criticality 
judgment, fault classifications, and state ranking. ANN with expert system (Wang, Liu, & Griffin, 
1998), neuro-fuzzy inference system (Sun, Au, & Choi, 2007), fuzzy logic (Abu-Siada et al., 2010; 
Nemeth, Laboncz, & Kiss, 2009), and genetic algorithm (Zheng, Zhoa, & Wu, 2009) deduce the results 
effectively. However, these model-free methods necessitate massive data for precise analysis. 
Similarly, the existing parametric methods need large or reasonable samples with typical probability 
distributions. However, the conclusions drawn from quantitative analysis differ from that of 
qualitative results. In contrast, non-parametric test is competent in treating the distribution-free 
samples but applicable only to a continuous population distributions. Although in reality, the sample 
size may be prohibited from being large, either due to physical limitations or due to practical difficul-
ties. Therefore, applying the statistical methods or model-free methods can hardly achieve useful 
solutions, when the system information becomes partially available. The solution to such problems 
with incomplete or non-deterministic information is always not unique. Whereas, the non-uniqueness 
is a basic law of the application of grey system theory and one can feel free to look at the problem 
with flexibility (Kuo, Yang, & Huang, 2008).

A system with partially known and partially unknown information is recognized as grey system. 
Grey system theory is useful in the condition, when less information about the system is available. It 
assists in determining the system’s key factors and in identifying the factors’ correlations. Grey 
numbers, grey relations, grey decision, grey predictions, and controls are the main subjects of grey 
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system theory (Yang, 2008). The grey incidence analysis of grey theory is applied to the cases of 
different sample sizes and distributions. Relatively small computations are required and the 
conclusions drawn from quantitative analysis differ from that of qualitative results. The grey 
clusterings based on matrices of grey incidences or whitenization weight functions on grey numbers 
are useful in classifying the observational objects into predefined classes (Deng, 2005; Liu & Lin, 
2006). Deng presented a grey whitenization weight function clustering method, wherein the weight 
of each index was calculated with the critical value of whitenization function (Deng, 2002). Zhang 
investigated the greyness of cluster result by establishing grey cluster on grey hazy set and com-
bined the cluster result with cluster weight sequence (Zhang, 2002). Xiao et al. put forward grey 
optimal clustering, whitenization weight function constructed with the standard values of each 
class, and clustering performed with generalized weighted distance method (Xiao & Xiao, 1997). Liu 
et al. offered a grey fixed weight cluster decision analysis. The weight of each index has been deter-
mined by qualitative or quantitative analysis through Delphi method or analytic hierarchy process, 
and clustering carried out by whitenization function (Liu, Shen, Tan, & Guo, 2012). Liu and Xie 
proposed a grey cluster evaluation method based on triangle whitenization weight function; the 
method divides the values into a range of index “s” clusters so to fulfill the evaluation requirements. 
The calculation was conducted on grey fixed weight clustering (Liu & Xie, 2011). Qiu projected a grey 
correlation cluster analysis method (Qiu, 1995). Grey similarity matrices were calculated on the 
computation of grey correlation degree and clustering performed with maximal tree method or 
coding method.

The whitenization weight functions mainly classify the factors of same type in order to simplify the 
complex systems or phenomenon like DGA. This paper demonstrated the synthetic evaluation of 
DGA test samples, on both fixed and variable weight grey clustering decision. Three caution levels of 
key gases are utilized in whitening the three weight functions. The whitenization weight function 
with lower measure is selected for caution level-1. However, whitenization weight functions with 
middle measure are preferred for caution level-2 and level-3. While identifying the criticality of 
transformers, representative DGA samples are divided into three grey classes by means of grey 
clustering.

2. Grey clustering method
In classification of clustering method, grey clusters are divided into grey correlation cluster and grey 
whitenization weight function cluster. Among which, grey correlation cluster is mainly employed to 
incorporate the factors of same class for the simplification of a complex systems. However, grey 
whitenization weight function is majorly applied to inspect the presence of observational objectives 
in a predefined class. Grey clustering is also known as grey evaluation. The variable and fixed weight 
clustering is offered in whitenization weight functions. The fundamentals of both the methods are 
presented in next section, which covers a small part of grey incidence analysis but the conceptual 
framework is believed to be enough to realize the clustering methodology.

2.1. Grey clusters with variable weights
The grey clusterings based on matrices of grey incidences or whitenization weight functions of grey 
numbers are used in classifying the observational objects into predefined classes. In general, the 
whitenization weight function of the j-criterion and k-subclasses is determined by considering the 
objects of clustering or looking at all the same type of objects as a complete system. Assume that, 
there exist “n” objects to be clustered according to “m” cluster criteria into different grey classes. 
The clustering method based on the observational value of the ith objects, i = 1, 2, … , n with j-crite-
rion, where j = 1, 2, … , m. Then the ith objects are classified into kth grey class, where, 1 ≤ k ≤ s. This 
process of computation is commonly known as grey clustering. Some of the imperative definitions 
are presented as follows:

Definition 1: All the s grey classes formed by the n objects, defined by their observational values at 
criterion j, are called the j-criterion with subclasses of k .The whitenization weight function on k-
subclass of the j-criterion is denoted as f kj (⋅).
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Definition 2: Assuming that the whitenization weight function f kj (⋅) for k-subclass of the j-criterion is 
shown in Figure 1 and the points xkj (1), x

k
j (2), x

k
j (3) and xkj (4) are called turning points of f kj (⋅).

Definition 3: Whitenization weight functions:
(a) �If the whitenization weight function f kj (⋅) above does not have first xkj (1) and second xkj (2) 

turning points then f kj (⋅) is called whitenization weight function of lower measure as shown in 
Figure 2.

(b) �If the second xkj (2) and third xkj (3) turning points of whitenization weight function f kj (⋅) coin-
cide as shown in Figure 1 then the function f kj (⋅) is called a whitenization weight function of 
middle measure, shown in Figure 3.

(c) �If the whitenization weight function f kj (⋅) as shown in Figure 1 does not have third xkj (3) and 
fourth xkj (4) turning points then f kj (⋅) is called whitenization weight function of upper measure, 
shown in Figure 4.

Proposition 1: (a) The typical whitenization weight function as shown in Figure 1 is expressed with:

(b) The whitenization weight function of lower measure as shown in Figure 2 is given as:

f kj (x)=
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�
xkj (1), x

k
j (2)

�

1, x∈
�
xkj (2), x

k
j (3)

�
xkj (4)−x

xkj (4)−x
k
j (3)
, x∈

�
xkj (3), x

k
j (4)

�

f kj (x)=

⎧
⎪⎪⎨⎪⎪⎩

0, x∉
�
0, xkj (4)

�

1, x∈
�
0, xkj (3)

�
xkj (4)−x

xkj (4)−x
k
j (3)
, x∈
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Figure 1. A typical 
whitenization function.

Figure 2. WW function of lower 
measures.
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(c) The whitenization weight function of middle measure as shown in Figure 3 is given by:

(d) The whitenization weight function of upper measure as shown in Figure 4 is given as:

Definition 4: Critical value for k-subclass of the j-criterion is defined as:

The whitenization weights function in Figure 1

The whitenization weights function in Figure 2

The whitenization weights function in Figures 1 and 4

f kj (x)=
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�
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k
j (4)

�
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⎪⎨⎪⎩
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Figure 3. WW function of 
middle measures.

Figure 4. WW function of upper 
measures.



Page 7 of 13

Ingle & Ingole, Cogent Engineering (2015), 2: 995786
http://dx.doi.org/10.1080/23311916.2014.995786

Definition 5: Assuming the critical value �kj  for k-subclass of the j-criterion, then the weight of the  
j-criterion with respect to k-subclass is:

Definition 6: Assume that Xij is the observation values of object “i” and criterion-j, the whitenization 
weight function f kj (⋅) of k-subclass of the j-criterion and the �kj  weight of the j-criterion with respect 
to k-subclass. Then

is said to be the cluster coefficient of variable weight for object “i” that belongs to the kth grey class.

Definition 7: (a) The following

is called the cluster coefficient vector of object “i”.

(b) The matrix of such vector represented as:

and is called the cluster coefficient matrix.

Definition 8: If

Then object i belong to the grey class k*.

2.2. Fixed weights clustering
A fixed weight clustering equally weights all criteria under consideration and also applicable to the 
situations, where observational data or dimensions are different.

Definition 9: For any K1 and K2 ∈ {1, 2, … , s} and if �k1j = �
k2
j  then �j is applied instead of �kj . Therefore, 

fixed weight criteria coefficient is:

where, j = 1, 2, … , m.

Definition 10: Assuming that xij (i = 1, 2, … , n; j = 1, 2, … , m) stands for the observational values of the 
object “i” with respect to criterion j, and f kj (⋅) is the whitenization weight function of the kth subclass 
of the j-criterion, then for any j = 1, 2, … , m, �j =

1

m
 holds true and

is called the equal weight cluster coefficient for object “i” belongs to kth grey class.

3. Configuration of whitenization weight functions
Several dissolved gas analysis (IEC, IEEE, CIGRE, and MSZ National standard’s ratio codes and graphi-
cal techniques) schemes are developed on empirical assumptions and experts’ knowledge in the 
interpretations (IEC 60599, 1992; Scatiggio & Pompili, 2013). These standards provide the threshold 
limits for guidance, investigation, and analysis. The IEEE Std. C.57.104 specified key gas values of 
three evaluation levels (Table 1) are considered for three cluster criteria.

�
k
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�
k
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Applying the whitenization weight function f kj (⋅), synthetic clustering performed on three different 
caution levels, where j = 1, 2, … , 7; for the criteria k = 1, 2, 3. The whitenization weight function of 
lower measure is used to figure out the caution level-1. However, whitenization weight functions 
with middle measure are preferred for caution level-2 and caution level-3 in experimentation. The 
chosen whitenization weight functions are configured with the equations to apprehend the three 
caution levels and displayed separately in the following in Tables 2–4.

The caution levels are used in tuning the preferred three whitenization weight functions. The criti-
cal values for k-subclass of the j-criterion with fixed weight clustering are given in Table 5. These 
critical values are used in computing the results of fixed weight clustering.

4. Identifying the criticality of transformers
This section presents execution of grey clustering on key gas data-set shown in Table 6. All seven key 
gases of every sample represent a characteristic of testing transformer. These key gas samples are 
the observational values represented as, xij (i = 1, 2, … , 21; j = 1, 2, … , 7) of different transformers. 
The object “i” with respect to criterion “j” is chosen for the specific key gas concentration. These 21 
specimens are used to find the cluster coefficient vectors. The configured whitenization weight func-
tions are employed for observation values with fixed weight criteria. In fixed or equal weight criteria, 
the considered key gases are treated with a weight of (1/7) for every elements and employed in 
computing the clustering coefficients.

Table 1. Key gas concentration in ppm (IEEE Std. C.57.104)
Key gases Level-1 Level-2 Level-3
H2 100 700 1,800

CH4 120 400 1,000

CO 350 570 1,400

CO2 2,500 4,000 10,000

C2H4 50 100 200

C2H6 65 100 150

C2H2 35 50 80

Table 2. Equations for lower measure WW function for caution level-1
Key gases f

1

j
(x) f

1

j
(x) f

1

j
(x)

H2 (j = 1) 0 1 (x−200)/100

x ≤ 0 and x ≥ 200 x ≤ 0 and x ≤ 100 100 ≤ x ≤ 200

CH4 (j = 2) 0 1 (200−x)/80

x ≤ 0 and x ≥ 200 0 ≤ x ≤ 120 120 ≤ x ≤ 200

CO (j = 3) 0 1 (400−x)/50

x ≤ 0 and x ≥ 400 0 ≤ x ≤ 350 350 ≤ x ≤ 400

CO2 (j = 4) 0 1 (3,000−x)/500

x ≤ 0 and x ≥ 3,000 0 ≤ x ≤ 2,500 2,500 ≤ x ≤ 3,000

C2H4 (j = 5) 0 1 (70−x)/20

x ≤ 0 and x ≥ 70 0 ≤ x ≤ 50 50 ≤ x ≤ 70

C2H6 (j = 6) 0 1 (70−x)/5

x ≤ 0 and x ≥ 70 0 ≤ x ≤ 65 65 ≤ x ≤ 70

C2H2 (j = 7) 0 1 (40−x)/5

x ≤ 0 and x ≥ 40 0 ≤ x ≤ 35 35 ≤ x ≤ 40
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The cluster coefficient vectors of fixed weight clustering for all the observational objects are shown 
in Table 7. The result shows the classification of all observational objects which are divided into three 
desired grey classes.

Table 3. Equations for middle measure WW function for caution level-2
Key gases f

2

j
(x) f

2

j
(x) f

2

j
(x) f

2

j
(x)

H2 (j = 1) 0 (x−100)/600 1, when x = 700 (1,300−x)/600 

x ≤ 100 and x ≥ 1,300 100 ≤ x ≤ 700 700 ≤ x ≤ 1,300

CH4 (j = 2) 0 (x−120)/280 1, when x = 400 (680−x)/280

x ≤ 350 and x ≥ 790 120 ≤ x ≤ 400 400 ≤ x ≤ 680

CO (j = 3) 0 (x−350)/220 1, when x = 570 (790−x)/220

x ≤ 120 and x ≥ 680 350 ≤ x ≤ 570 570 ≤ x ≤ 790

CO2 (j = 4) 0 (x−2,500)/1,500 1, when x = 4,000 (5,500−x)/1,500

x ≤ 2,500 and x ≥ 5,500 2,500 ≤ x ≤ 4,000 4,000 ≤ x ≤ 5,500

C2H4 (j = 5) 0 (x−50)/50 1, when x = 100 (150−x)/50

x ≤ 50 and x ≥ 150 50 ≤ x ≤ 100 100 ≤ x ≤ 150

C2H6 (j = 6) 0 (x−65)/35 1, when x = 100 (135−x)/35

x ≤ 65 and x ≥ 135 65 ≤ x ≤ 100 100 ≤ x ≤ 135

C2H2 (j = 7) 0 (x−35)/15 1, when x = 50 (65−x)/15

x ≤ 35 and x ≥ 65 35 ≤ x ≤ 50 50 ≤ x ≤ 65

Table 4. Equations for middle measure WW function for caution level-3
Key gases f

3

j
(x) f

3

j
(x) f

3

j
(x) f

3

j
(x)

H2 (j = 1) 0 (x−700)/1,100 1, when x = 1,800 (2,900−x)/1,100

x ≤ 700 and x ≥ 2,900 700 ≤ x ≤ 1,800 1,800 ≤ x ≤ 2,900

CH4 (j = 2) 0 (x−400)/600 1, when x = 1,000 (1,600−x)/600

x ≤ 400 and x ≥ 1,600 400 ≤ x ≤ 1,000 1,000 ≤ x ≤ 1,600

CO (j = 3) 0 (x−570)/830 1, when x = 1,400 (2,230−x)/830

x ≤570 and x ≥ 2,230 570 ≤ x ≤ 1,400 1,400 ≤ x ≤ 2,230

CO2 (j = 4) 0 (x−4,000)/6,000 1, when x = 10,000 (16,000−x)/6,000

x ≤ 4,000 and x ≥ 16,000 4,000 ≤ x ≤ 10,000 10,000 ≤ x ≤ 16,000

C2H4 (j = 5) 0 (x−100)/100 1, when x = 200 (300−x)/100

x ≤ 100 and x ≥ 300 100 ≤ x ≤ 200 200 ≤ x ≤ 300

C2H6 (j = 6) 0 (x−100)/50 1, when x = 150 (200−x)/50

x ≤ 100 and x ≥ 200 100 ≤ x ≤ 150 150 ≤ x ≤ 200

C2H2 (j = 7) 0 (x−50)/30 1, when x = 80 (200−x)/50

x ≤ 50 and x ≥ 110 50 ≤ x ≤ 80 80 ≤ x ≤ 110

Table 5. Critical values of three whitenization weight functions

�
K

j
H2 (j = 1) CH4 (j = 2) CO (j = 3) CO2 (j = 4) C2H4 (j = 5) C2H6 (j = 6) C2H2 

(j = 7)
K = 1 100 120 350 2,500 50 65 35

K = 2 700 400 570 4,000 100 100 50

K = 3 1,800 1,000 1,400 10,000 200 150 80
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In reference to fixed or equal weight criteria, maximum values are obtain as

max
1≤k≤3

{
�
1

1

}
=0.4285; max

1≤k≤3

{
�
1

2

}
=0.7143; max

1≤k≤3

{
�
1

3

}
=1

max
1≤k≤3

{
�
1

4

}
=1; max

1≤k≤3

{
�
1

5

}
=0.4285; max

1≤k≤3

{
�
1

6

}
=0.8571

max
1≤k≤3

{
�
1

7

}
=1; max

1≤k≤3

{
�
1

8

}
=0.8571; max

1≤k≤3

{
�
1

9

}
=0.4402

Table 6. Dissolved gas-in-oil samples of testing transformers
Specimen H2 CH4 CO CO2 C2H4 C2H6 C2H2

Tx1 53 49 748 6,021 2,824 514 31

Tx2 12 325 12 787 1 3 108

Tx3 1 2 34 322 1 1 1

Tx4 1 19 140 1,879 1 57 1

Tx5 19 303 432 3,114 1 157 1

Tx6 1 46 219 9,909 6 16 1

Tx7 1 2 34 327 1 1 1

Tx8 1 19 159 3,303 47 60 1

Tx9 12 8,778 317 2,959 11,900 4,834 19

Tx10 1 73 124 66,261 1 88 1

Tx11 66 87 211 1,902 77 53 24

Tx12 111 102 377 2,496 34 62 36

Tx13 103 114 327 2,734 66 32 17

Tx14 92 103 351 2,496 37 41 22

Tx15 57 64 218 2,210 41 63 33

Tx16 109 76 507 2,910 48 22 13

Tx17 29 123 344 2,506 12 5 1

Tx18 77 98 259 2,496 38 52 26

Tx19 18 76 153 2,107 31 27 5

Tx20 89 113 302 1,992 59 63 29

Tx21 22 106 514 13,327 36 72 28

Table 7. Coefficient matrix of grey cluster with fixed weights

�
k

i
K = 1 K = 2 K = 3 �

k

i
K = 1 K = 2 K = 3

i = 1 0.4285 0.0272 0.0787 i = 12 0.8786 0.0296 0

i = 2 0.7143 0.1045 0.0095 i = 13 0.8146 0.0687 0

i = 3 1 0 0 i = 14 0.9971 0.0006 0

i = 4 1 0 0 i = 15 1 0 0

i = 5 0.4285 0.205 0.1228 i = 16 0.7271 0.1431 0

i = 6 0.8571 0 0.1406 i = 17 0.9929 0.0021 0

i = 7 1 0 0 i = 18 1 0 0

i = 8 0.8571 0.0764 0 i = 19 1 0 0

i = 9 0.4402 0.0437 0 i = 20 0.9357 0.0257 0

i = 10 0.7142 0.0938 0 i = 21 0.5714 0.135 0.0636

i = 11 0.8571 0.077 0
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Among the three grey classes, only one class (DGA level-1) has shown the effective response in 
classification. Observing the classification system as a whole, sample no. 1, 5, 9, and 21 are found in 
a critical level of maintenance. The judgment about criticality biased with one caution level  
i.e. level-1; reason is that the coefficients of other levels are contributed extremely imperceptibly in 
the classification. Therefore, it is evidently unreasonable to consider the effective weights of all 
gases equally. Hence, it is obvious that all the specifications have different weights on every caution 
levels, such as in case of variable weight clustering.

The critical values for variable weights clustering for three caution levels are obtained and dis-
played in Table 8. The ratio of specified safety concentration of a gas to the total concentration of all 
gases presented in a particular level is assigned for critical values. The observation values of object, 
whitenization weight function, and weights for variable clustering resulted into the cluster coeffi-
cient matrix as shown in Table 9.

The variable weight criteria of grey subclass with highest magnitude led to following results:

max
1≤k≤3

{
�
1

10

}
=0.7142; max

1≤k≤3

{
�
1

11

}
=0.8571; max

1≤k≤3

{
�
1

12

}
=0.8786

max
1≤k≤3

{
�
1

13

}
=0.8146; max

1≤k≤3

{
�
1

14

}
=0.9971; max

1≤k≤3

{
�
1

15

}
=1

max
1≤k≤3

{
�
1

16

}
=0.7271; max

1≤k≤3

{
�
1

17

}
=0.9929; max

1≤k≤3

{
�
1

18

}
=1

max
1≤k≤3

{
�
1

19

}
=1; max

1≤k≤3

{
�
1

20

}
=0.9357; max

1≤k≤3

{
�
1

21

}
=0.5714

max
1≤k≤3

{
�
3

1

}
=0.2507; max

1≤k≤3

{
�
1

2

}
=0.9518; max

1≤k≤3

{
�
1

3

}
=1

max
1≤k≤3

{
�
1

4

}
=1; max

1≤k≤3

{
�
2

5

}
=0.3565; max

1≤k≤3

{
�
3

6

}
=0.6731

Table 8. Critical values for variable weight clustering

�
K

j
H2 (j = 1) CH4 (j = 2) CO (j = 3) CO2 (j = 4) C2H4 (j = 5) C2H6 (j = 6) C2H2 

(j = 7)
K = 1 0.0310 0.0372 0.1086 0.7763 0.0155 0.0201 0.0108

K = 2 0.1182 0.0675 0.0962 0.6756 0.0168 0.0168 0.0084

K = 3 0.1230 0.0683 0.0956 0.6835 0.0136 0.0102 0.0054

Table 9. Variable weights clustering coefficient matrix of grey subclass

�
k

i
K = 1 K = 2 K = 3 �

k

i
K = 1 K = 2 K = 3

i = 1 0.0791 0.0183 0.2507 i = 12 0.9203 0.0145 0

i = 2 0.9518 0.0494 0.0003 i = 13 0.6232 0.1114 0

i = 3 1 0 0 i = 14 0.9978 0.0004 0

i = 4 1 0 0 i = 15 1 0 0

i = 5 0.0574 0.3565 0.0088 i = 16 0.2518 0.2555 0

i = 6 0.2236 0 0.6731 i = 17 0.9892 0.0034 0

i = 7 1 0 0 i = 18 1 0 0

i = 8 0.2236 0.3617 0 i = 19 1 0 0

i = 9 0.2142 0.2067 0 i = 20 0.9930 0.0030 0

i = 10 0.2114 0.0111 0 i = 21 0.0947 0.0751 0.3045

i = 11 0.9844 0.0091 0
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It follows that the DGA sample no. 2, 3, 4, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, and 20 are classified 
in grey level-1. If the magnitudes of cluster coefficients are considered as score of the transformers, 
and then sample no. 3, 4, 7, 15, 18, and 19 are referred as absolutely healthy transformers. Whereas 
sample no. 2, 11, 12, 14, 17, and 20 are observed to be in the normal condition, except for sample 
no. 9, 10, and 13. Therefore, these three samples are observed as the critical elements in grey class-1. 
The sample no. 5, 8, and16 are measured in criticality level-2 cluster. Sample no. 1, 6, and 21 are 
found in grey class-3 which implies that these samples are the most critical elements among the 
considered test samples and need immediate attention. The effect of variable weight clustering 
shows the criticality judgments on different levels and useful in setting the priorities about mainte-
nance. The variable weight clustering is effective to the cases, when whitenization weight functions 
are selected based on experience.

5. Conclusions
Information from the analysis of gasses dissolved in insulating oil of transformer is a primary 
source of state assessment. The simple and reliable process, similar to variable weight grey cluster-
ing, facilitates the categorization of objects, which identify the criticality of transformers at three 
caution levels. The results of grey clustering certainly helped in setting the priorities about preven-
tive maintenance and recommended the straight action for critical cases. The results obtained in 
this experimentation are limited to dissolved gas in oil samples and the three caution levels refer to 
IEEE standard. However, the variable weight clustering method will be effectively implemented, if 
additional monitoring parameters and their specified safety values are used for comprehensive 
analysis.

max
1≤k≤3
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=1; max

1≤k≤3

{
�
2

8

}
=0.3617; max

1≤k≤3

{
�
1

9

}
=0.2142

max
1≤k≤3

{
�
1

10

}
=0.2114; max

1≤k≤3

{
�
1

11

}
=0.9844; max

1≤k≤3

{
�
1

12

}
=0.9203
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1≤k≤3

{
�
2

16

}
=0.2555; max
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1≤k≤3
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}
=0.3045
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